8-8 Oct 2019 Paris (France)
Optimized automated lesion segmentation method for Multiple Sclerosis: validation and comparison with state-of-the-art methods on a 3D-FLAIR public dataset with multi-rater consensus.
Philippe Tran  1, 2, *@  , Urielle Thoprakarn  2@  , Emmanuelle Gourieux  3@  , Clarisse Longo Dos Santos  2@  , Didier Dormont  1@  , Marie Chupin  3@  , Jean-Baptiste Martini  2@  
1 : Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute  (ICM)
Institut National de la Santé et de la Recherche Médicale : U1127, CHU Pitié-Salpêtrière [APHP], Sorbonne Université : UM75, Centre National de la Recherche Scientifique : UMR7225
47-83 Boulevard de l\'Hôpital 75651 Paris Cedex 13 -  France
2 : Qynapse
Qynapse
130 rue de Lourmel, Paris, France -  France
3 : CATI Multicenter Neuroimaging Platform  (CATI)  -  Website
Institut National de la Santé et de la Recherche Médicale - INSERM : U1117, Sorbonne Universités, UPMC, CNRS : UMR7225
* : Corresponding author

Magnetic resonance imaging has become crucial for diagnosis and disease monitoring in multiple sclerosis (MS), and White Matter Hyperintensities (WMH) on FLAIR are considered a marker of MS. The White matter Hyperintensities Automatic Segmentation Algorithm (WHASA) (Samaille et al., 2012) has been developed for age-related WMH on 2D images, but needs to be optimized for 3D-FLAIR and MS patients. 3D-FLAIR acquisitions can yield differences in grey and white matter contrast compared to 2D images. Furthermore, MS lesions show differences in intensity levels compared to age-related WMH. This study focuses on the improvements resulting from optimization and the comparison with three automated lesion segmentation tools: one optimized for MS (LST - Schmidt et al., 2012), and two validated on a mixed cohort, with MS and age-related WMH (LesionBrain - Manjon et al., 2016 and Lesion-TOADS - Shiee et al., 2010)


Online user: 21 RSS Feed